Superconvergence of Discontinuous Galerkin Method for Linear Hyperbolic Equations in One Space Dimension∗

نویسنده

  • YANG YANG
چکیده

In this paper, we study the superconvergence of the error between the discontinuous Galerkin (DG) finite element solution and the exact solution for linear conservation laws when upwind fluxes are used. We prove that if we apply piecewise k-th degree polynomials, the error between the DG solution and the exact solution is (k+2)-th order superconvergent at the downwind-biased Radau points with suitable initial discretization. Moreover, we also prove the DG solution is (k+2)-th order superconvergent both for the cell averages and for the error to a particular projection of the exact solution. The proof is valid for arbitrary regular meshes and for P polynomials with arbitrary k ≥ 1, and for both periodic boundary conditions and for initial-boundary value problems. We provide numerical experiments of polynomials of degree m = 1 and 2 to demonstrate that the convergent rate is optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension

In this paper, we study the superconvergence property for the discontinuous Galerkin (DG) and the local discontinuous Galerkin (LDG) methods, for solving one-dimensional time dependent linear conservation laws and convection-diffusion equations. We prove superconvergence towards a particular projection of the exact solution when the upwind flux is used for conservation laws and when the alterna...

متن کامل

Discontinuous Galerkin method for hyperbolic equations involving δ - functions 1

In this paper, we develop and analyze discontinuous Galerkin (DG) methods to solve hyperbolic equations involving δ-functions. We investigate negative-order norm error estimates for the accuracy of DG approximations to linear hyperbolic conservation laws in one space dimension with singular initial data. We prove that, by using piecewise k-th degree polynomials, at time t, the error in the H(R\...

متن کامل

Superconvergence of the local discontinuous Galerkin method for linear fourth-order time-dependent problems in one space dimension

In this paper we investigate the superconvergence of local discontinuous Galerkin (LDG) methods for solving one-dimensional linear time-dependent fourth-order problems. We prove that the error between the LDG solution and a particular projection of the exact solution, ēu , achieves ( k+ 2 ) th-order superconvergence when polynomials of degree k (k 1) are used. Numerical experiments with Pk poly...

متن کامل

Accuracy enhancement of discontinuous Galerkin methods for stiff source terms

Discontinuous Galerkin (DG) methods exhibit ”hidden accuracy” that makes the superconvergence of this method an increasing popular topic to address. Previous work has implemented a convolution kernel approach that allows us to improve the order of accuracy from k+1 to order 2k+m for time-dependent linear convection-diffusion equations, where k is the highest degree polynomial used in the approx...

متن کامل

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients

In this paper, we study the superconvergence behavior of discontinuous Galerkin methods using upwind numerical fluxes for one-dimensional linear hyperbolic equations with degenerate variable coefficients. The study establishes superconvergence results for the flux function approximation as well as for the DG solution itself. To be more precise, we first prove that the DG flux function is superc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011